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FIG.4. Energy balance and heat transfer during the boiling transient shown in Fig. 2.
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l'\O~IEl'\CLATURE

equivalent diame ter
friction factor
dimension less distance normal to the duct wall
Nusselt number-constant axial heat flux, iso­
thermal local periphery
Nusselt number-constant axial heat flux,un iform
heatl1ux on the periphery at a given axial location
pressure
duct perimeter
Prandtl number
Reynolds number
axial velocity

s arc length
T temperature
x,y,z spatial coordinates

Subscripts
b bulk
w wall

1. 'l''TRODUCTIOl'i

HEXAGO~AL passages are the subject of some modern
engineering problems. Examples can be quoted from the
design of hexagonal compact exchangers [I] and from the
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when inserted in equation (4), gives a simple relation between
the average Nusselt number and the bulk value of the
dimensionless temperature 'P,

The calculated Nusselt number in this case will be designated
NUll,·

(2) Uniform axial heat flux and partially heated by a
uniform heat flux-partially insulated periphery: the con­
ditions for equation (3) are

(5)

(6)

(7)

(8)

2
!Re=-.

L{,

1
Nll=-.

'P.

Equation (6) has the same pattern as the one relating the
friction factor and the average dimensionless velocity defined
by the transformations (I)

The above equation is valid for fully developed flow in a duct
regardless of the type of the thermal boundary. The relation
between the heat flux supplied uniformly along the duct axis
and the bulk temperature axial gradient,

dT. 4q
dx = pcu.Db '

Boundary conditions
The boundary condition for the momentum equation (2) is

that U = 0 on the solid boundary. As stated in the previous
section, two thermal boundary conditions are investigated:

(1) Uniform axial heat flux and partially isothermal­
partially insulated periphery at a given axial location, i.e.

0'P
'P = 0 and - = o.aN

study of friction and heat transfer characteristics of flow of
molten glass in ceramic hexagonal conduits [2]. Fully
developed laminar flow and heat transfer can be frequently
encountered inside ducts having small hydraulic diameters or
carrying highly viscous fluids. Shah and London (3) have
compiled and described in detail the methods available in the
literature for the solution of this class of problems. Using
conformal mapping, Tao [4] analysed the case of the laminar
fully developed flow with linear axial wall temperature
distribution and arbitrary heat generation in the hexagonal
ducts. Hsu [5] treated with finite difference the axially
constant heat flux thermal boundary conditions with or
without energy generation in the fluid. He considered two
situations around the duct periphery. The first had uniform
heat flux around the periphery and the second was the
situation when the heat flux from each pair opposing sides was
uniform and equal but different in magnitude from the fluxes
between the other two pairs of sides. The reported NUll 1 is
3.795. Employing the nine-point matching technique, Cheng
[6] calculated the NUll, in regular polygonal ducts with axial
constant wall heat flux and isothermal periphery. Cheng [7]
extended the above work to include viscous dissipation and
uniform heat generation. Again, Cheng [8], with the more
accurate twelve-point matching method, determined the NUll,
in the regular polygonal ducts. The NUll, value for the
.hexagonal duct from Cheng [8] is 3.862, which is higher than
that of Hsu [5] by 1.765%.

The objective of the present investigation is to generate
theoretical Nusselt values for the fully developed laminar flow
inside partially insulated hexagonal ducts receiving constant
axial heating. In view of the thermal condition around theduet
periphery at a given axial location, the thermal situation on the
solid exposed boundary can be further classified . Two such
subcategories are considered, namely, the isothermal and the
uniform heat flux peripheries.

2. Al'\AL'iSIS

The constant property, laminar fully developed momen­
tum and energy equations under the absence of viscous
dissipation, energy generation within the fluid, axial
conduction, and natural convection, when subjected to the
following transformations:

(9)

(10)

0'1'
and -=0.aN

0'P
-=-1aN

i'l',,(Y,Z)dS=O.

After each iteration, the value of the integral in the LHS of

The Nusselt number is given the symbol NUll, to distinguish it
from the previous situation.

The linearity of the momentum part of the problem
simplifies the method for the solution of its finite difference
equation. The solution is straightforward and was
accomplished by the Gauss-Seidel iterational procedure.

The asymmetry of the thermal boundary in some of the cases
studied [Figs. I and 2] necessitated that the calculation
domain cover the whole hexagonal duct. The number of the
grid points on the j-and zaxes(Fig.l)is 33 and 65, respectively.
The integration of the dimensionless velocity and temperature
profiles to determine the average velocity L{, and the bulk
temperature \1'. is carried out numerically using a 2·dim.
extension of the Simpson's rule [9]. The friction factor is
calculated from equation (7), while the incremental pressure
drop for complete flow development and the length of the
developing flow are computed by SUbstituting the numerically
found velocity profile in the equations of Lundgren et a/. [10]
and McComas [11].

The iterative solution of the energy equation (3) starts by
inserting the thus obtained velocity profile U(Y,Z) and an
arbitrarily selected initial guess of the dimensionless
temperature distribution 'P(Y, Z) in the set of difference
equations. The initial guess should satisfy either the boundary
conditions in equations (8) or (9).

Performing a line integration over the duct boundary of the
definition of the dimensionless temperature 'P, equation (3),
yields

(2)

(3)

(4)

T-'t
'P= ..,

(
qDb) dP4 - Re-
K dX

- p
p=­

pu~'
u= ---..,-;=-

By invoking an energy balance between the axial variation
of the total enthalpy of the flowing fluid and the convected
energy to the duct wall, it is possible to relate the Nusselt
number to the axial temperature gradient by

4Nu I d7;,
RePrD. = (T.-Tw) dX '

x y z
X=-, Y=- Z=- (I)

Db Db' Db

where t; is the average wall temperature at a given axial
location defined by

- If.T,,(x) = - T,,(x,y,z)ds
P p

yield the following dimensionless forms of the momentum and
energy equations:

H~T26:9-J
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f . Re= 15.05322
NLlH =3.99295
NLlT' =3.33920

NLlH, =5.16991

NLlH, =5.24017

NLlH, =4.92111

NLl H, =4.71214

NLlH, =5.89060

FIG. I. Fully developed Nusselt numbers, NUll" in a partially insulated hexagonal duct,
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FIG.2. Fully develop ed Nusselt numbers, NUll,. in a partially insul ated hexagonal duct .
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equation (10) is determined. This amount represents the
difference between the average wall temperature at a given
iteration and the true average wall temperature, r;Since all
temperatures are referenced to the average wall temperature,
ti; the convergence of the dimensionless temperature can be
enhanced by subtracting after each iteration the residue of
equation (to) from all the dimensionless temperatures on the
wall and in the domain except those on the wallspecifiedby 'P
= O. The temperatures corrected for the average wall
temperature are then used in the next iteration. After
convergence has been achieved, the bulk temperature, 'P b , is
evaluated and its inverse is the Nusselt number [equation (6)].
In presenting the heat transfer results, the characteristic length
selected to form the Nusselt numberis the hydraulic diameter.
This is irrespective of the fact that a portion of the hexagon
boundary is adiabatic and does not contribute in transferring
heat to the fluid. This is a choice which maintains the
consistency between the hydrodynamic and thermal sides of
the problem.

3. RESULTS A/'I;D DISCUSSIO:,\S

In order to assess the validity and accuracy of the finite
difference computional procedure, the attention was first
focused on one-quarter of the duct. The number of grid points
selected on the Y and Z axes are also 65 and 33. Considering
one-sixth of the duct might lead to better numerical accuracy
for the same total number of grid points, but the form of the
finite difference formulation willbe different from that written
for the total hexagonal duct owing to the existence of two
inclined boundaries in the case of the sixth. The friction factor
and the Nusselt numbers NUn, and NUn, for completely
exposed hexagon are calculated using one-quarter of the duct.
The same variables are then produced employing a full
hexagon calculation domain. The results from one-quarter
and the full hexagon as wellas those obtained from the twelve­
point matching method developed by Cheng [8] are compiled
for comparison in Table 1.

Inspection of Table 1 reveals that the percentage difference
in f Re, NUn" and NUn, for the quarter and full hexagon
calculations domains are 0.015, 0.17, and -0.038%,
respectively. Confining the calculation domain to only one­
quarter of the hexagon instead of the full duct does not
materially alter the characteristic values of the flow and heat
transfer. As long as the complete hexagonal domain is needed
to handle the partially insulated ducts, which encompasses
unsymmetrical cases, it is fruitful to compare the full duct
results with those of Cheng [8]. A still closer difference of
0.005% exists between the hydrodynamic result of Cheng [8]
and the numerical computations with the full hexagon. This
improvement does not exist in NUn, and NUll, values and the
deviations are wider and equal to +0.226% and -0.127%.
The twelve-point matching method, due to Cheng [8], has the
same nature as an analytic exact solution. Therefore, the
results ofCheng [8] are believed to be accurate. The numerical
output of the present investigation gives support to this
statement, and the differences in Table 1 are probably due to
the residual error in the finite-difference formulation.
Consequently, the expected accuracies of the friction factor,
NUn" and NUn, of the partially insulated ducts presented in
this work are approximately 0.005,0.2, and 0.1%, respectively.

Table 1. Accuracy of computing the hexagon characteristics

One-quarter Full hexagon
65 x 33 65 x 33 Cheng [8]

fRe 15.05544 15.05322 15.054
NUn, 3.9998 3.99295 4.002
NUn, 3.8654 3.86689 3.862

After assessing the validity and accuracy of the finite
difference computational procedure, the next task is to
proceed and develop the Nusselt numbers for the partially
insulated ducts. Eleven classifications from the point ofview of
the number ofinsulated sides and their relative positions cover
all possibilities. Figures 1 and 2 are catalogues of the thermal
results corresponding to the thermal boundary conditions in
equations (8)and (9), respectively. For convenience, the value
of the Nusselt number in each case is written below the sketch
representing it. The Nusselt number based on the hexagon
hydraulic diameter and not on acharacteristic length based on
the perimeter through which the heat flows, facilitates the
comparison between the different cases and reflects directly
the effectivenessof the average rate of heat transfer through a
unit area of the exposed walls. Isothermal lines, 'P = constant,
are also plotted on the sketches. It is interesting to notice about
the distribution of the isothermal lines that it seems as if they
have a gas bubble in their middle which is attracted and
distorted by the effect of the insulated surfaces acting in the
same sense as free surfaces.

In order to complete the information about the fully
developed laminar flow and heat transfer in hexagonal ducts,
the hydrodynamic length needed for complete flow
development, the incremental pressure drop in the entrance
region, and the Nusselt number for an isothermal duct arc
calculated. The values obtained are 0.02854, 1.40714, and
3.3392,respectively. The Nu; is determined using the solution
method outlined in ref. [12] and is developed to handle the
nonlinear energy equation in the case of isothermal ducts.
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